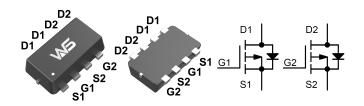


General Description

WSD2067 combines a P-Channel enhancement mode power MOSFET which is produced with high cell density and DMOS trench technology and a low forward voltage schottky diode. the tiny and thin outline saves PCB consumption.


Applications

- Bidirectional blocking switch;
- DC-DC conversion applications;
- Li-battery charging;

Product Summery

V _{DSS}	R _{DSON} (typ.)	I _D
-20V	60mΩ@-4.5V	
	75mΩ@-2.5V	-3.5A
	105mΩ@-1.8V	

DFN3x2_8L_EP Pin Configuration

Absolute Maximum Ratings (T_A = 25 °C Unless Otherwise Noted)

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage	-20	V	
V_{GS}	Gate-Source Voltage	±8	V	
I _D @T _c =25℃	Continuous Drain Current, V _{GS} = -4.5V ¹	-3.5	Α	
I _{DM}	300µS Pulsed Drain Current, (V _{GS} =-4.5V)	-25	Α	
V_{R}	Schottky Reverse Voltage	20	V	
I _F	Schottky Continuous Forw ard Current	2	Α	
P _D	Power Dissipation Derating above T _A = 25°C (Note 2)	1.2	W	
T_{STG},T_{J}	Storage Temperature Range	-55 to 150	${\mathbb C}$	
$R_{\theta JA}$	Thermal Resistance Junction-ambient ¹	80	°C/W	
Rejc	Thermal Resistance Junction-Case ¹	50	°C/W	

Note1: Devices mounted on FR4 PCB with minima soldering pad;

Note2: For a single chip.

Dual P-Ch MOSFET

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-20			V
$\triangle BV_{DSS}/\triangle T_{J}$	BVDSS Temperature Coefficient	Reference to 25 $^{\circ}\mathrm{C}$, I _D =-1mA		-0.01		V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =-4.5V , I _D =-1A		60	99	mΩ
		V _{GS} =-2.5V , I _D =-1A		75	120	
		V _{GS} =-1.8V , I _D =-1A		105	180	
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =-250uA	-0.5	-0.7	-1.2	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient			3.13		mV/℃
	Drain-Source Leakage Current	V _{DS} =-16V , V _{GS} =0V , T _J =25℃			-1	uA
I _{DSS}		V _{DS} =-16V , V _{GS} =0V , T _J =55℃			-5	
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm12V$, $V_{DS}=0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-1A		16		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2		Ω
Qg	Total Gate Charge (-4.5V)	V _{DS} =-10V , V _{GS} =-4.5V , I _D =-1A		5.2		nC
Q _{gs}	Gate-Source Charge			0.7		
Q_{gd}	Gate-Drain Charge			1.8		
T _{d(on)}	Turn-On Delay Time			20		ns
T _r	Rise Time	V _{DD} =-10V , V _{GS} =-4.5V ,		18		
T _{d(off)}	Turn-Off Delay Time	$R_G=6\Omega I_D=-1A,$		300		
T _f	Fall Time			120		
C _{iss}	Input Capacitance	V _{DS} =-10V , V _{GS} =0V , f=1MHz		420		pF
C _{oss}	Output Capacitance			180		
C _{rss}	Reverse Transfer Capacitance			90		

Note:

^{1.} The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper, t \leq 10sec.

^{2.}The data tested by pulsed , pulse width $\,\leq\,$ 300us , duty cycle $\,\leq\,$ 2%

^{3.} The power dissipation is limited by 150 $^{\circ}\mathrm{C}$ junction temperature

^{4.} The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Performance Characteristics of P-Channel MOSFET

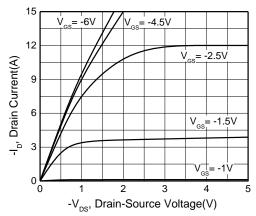


Fig 1. Output Characteristics

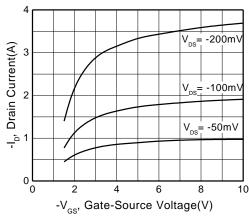


Fig 2. Transfer Characteristics

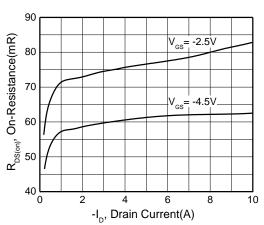


Fig 3. On-Resistance vs. Drain Current

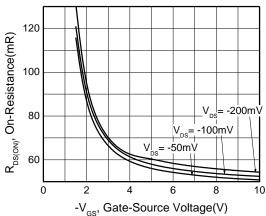


Fig 4. On-Resistance vs.Gate-Source Valtage

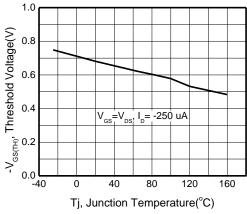
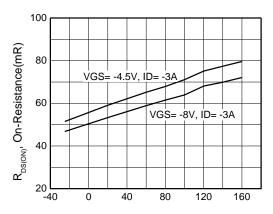


Fig 5. Threshold Voltage



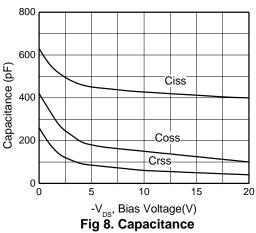


Fig 6. On-Resistance Temperature Coefficient

Typical Performance Characteristics of Schottky

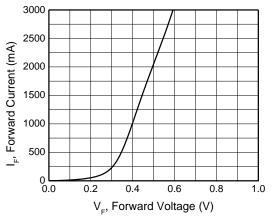


Figure 9. Schottky Forward Characteristics

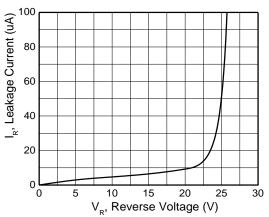


Figure 10. Schottky Reverse Characteristics

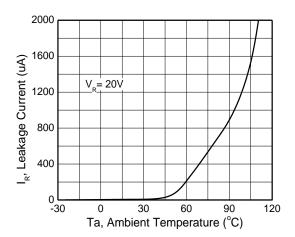
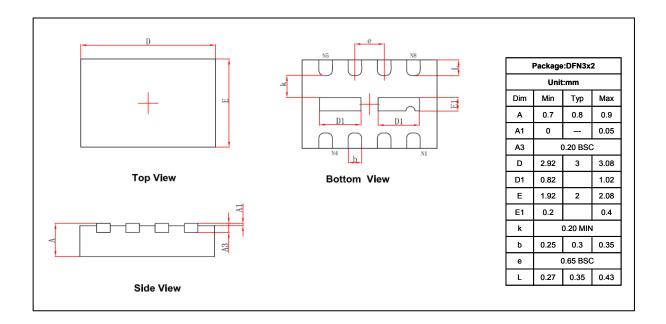



Figure 11. Leakage Current Vs. Temperature

Package Information DFN3x2_8L_EP

Attention

- 1, Any and all Winsok power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Winsok power representative nearest you before using any Winsok power products described or contained herein in such applications.
- 2, Winsok power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Winsok power products described or contained herein.
- 3, Specifications of any and all Winsok power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- 4, Winsok power Semiconductor CO., LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- 5,In the event that any or all Winsok power products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- 6, No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of Winsok power Semiconductor CO., LTD.
- 7, Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Winsok power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- 8, Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the Winsok power product that you Intend to use.
- 9, this catalog provides information as of Sep.2014. Specifications and information herein are subject to change without notice.