WSF3055

Description

The WSF3055 uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5 V . This device is suitable for use as a Battery protection or in other

Switching application

Features

1,100 \% U IS + Rg Tested
2,Re liable and Rugged
3,Lead Free Available (RoHS Compliant)

Product Summery

VDS	RDS(ON)	ID
30	$15 \mathrm{~m} \Omega$	24 A
-30	$11 \mathrm{~m} \Omega$	-19.8 A

Application

Motor Control.
Protable equipment application.
Synchronous Rectification.
TO-252 Pin Configuration

Absolute Maximum Ratings ($\mathrm{T}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter		N Channel	P Channel	Unit
Voss	Drain-Source Voltage		30	-30	V
Vgss	Gate-Source Voltage		± 20	± 20	
lo	Continuous Drain Current	Tc $=25^{\circ} \mathrm{C}$	24	-19.8	A
		Tc $=100^{\circ} \mathrm{C}$	15	-12.6	
Po	Maximum Power Dissipation	$\mathrm{T}^{\prime}=25^{\circ} \mathrm{C}$	18.9		W
		Tc $=100^{\circ} \mathrm{C}$	7.6		
ID	Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	9	-7.6	A
		$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	7.3	-6	
$\mathrm{IDM}^{\text {a }}$	Pulsed Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	36	-30.4	A
Po	Maximum Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.78		W
		$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	1.78		
Is	Diode Continuous Forward Current	Tc $=25^{\circ} \mathrm{C}$	3	-3	A
TJ	Maximum Junction Temperature		150		${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature Range		-55 to 150		
Reлc	Thermal Resistance-Junction to Case	Steady State	6.6		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Thermal Resistance-Junction to Ambient	$t \leqslant 10 \mathrm{~s}$	45		${ }^{\circ} \mathrm{C} / \mathrm{W}$
R		Steady State	95		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{I}_{\mathrm{AS}}{ }^{\text {c }}$	Avalanche Current, Single pulse	$\mathrm{L}=0.1 \mathrm{mH}$	13	19	A
$E_{A S}{ }^{\text {c }}$	Avalanche Energy, Single pulse	$\mathrm{L}=0.1 \mathrm{mH}$	8.5	18	mJ

Note a : Pulse width limited by max. junction temperature.
Note b: Surface mounted on 1in2 pad area.
Note c: UIS tested and pulse width limited by maximum junction temperature $150^{\circ} \mathrm{C}$ (initial temperature $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$)

N Channel Electrical Characteristics ($\mathrm{T}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Test Conditions	N Channel			Unit
			Min.	Typ.	Max.	
Static Characteristics						
BVoss	Drain-Source Breakdown Voltage	VGs $=0 \mathrm{~V}$, Ids $=250 \mu \mathrm{~A}$	30	-	-	V
Idss	Zero Gate Voltage Drain Current	$V_{D S}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \mathrm{~T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$	-	-	50	A
			-	-	5	mA
$V_{\text {GS(th) }}$	Gate Threshold Voltage	VDS $=$ VGs, $\operatorname{lds}=250 \mu \mathrm{~A}$	1.3	1.8	2.3	V
Igss	Gate Leakage Current	$\mathrm{V}_{\mathrm{Gs}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{ds}}=0 \mathrm{~V}$	-	-	± 100	nA
RDS(ON) d	Drain-Source On-state Resistance	Vgs=10V, Ids=9A	-	15	20	$\mathrm{m} \Omega$
		VGs=4.5V, lds=8A	-	18	23	$\mathrm{m} \Omega$

Diode Characteristics

$V_{S D}{ }^{\text {d }}$	Diode Forward Voltage	$\mathrm{Isd}=1 \mathrm{~A}, \mathrm{Vgs}=0 \mathrm{~V}$	0.3	0.4	0.55	V
trr	Reverse Recovery Time	$\mathrm{lsd}=4.0 \mathrm{~A}, \mathrm{dlsd} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	11	-	ns
Qrr	Reverse Recovery Charge		-	3.5	-	nC

Dynamic Characteristics e

Rg	Gate Resistance	$V_{G s}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ds}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	3.3	-	Ω
Ciss	Input Capacitance	$\begin{aligned} & V_{G S}=0 \mathrm{~V}, V_{D S}=15 \mathrm{~V}, \\ & \text { Frequency }=1.0 \mathrm{MHz} \end{aligned}$	-	395	514	pF
Coss	Output Capacitance		-	105	-	
Crss	Reverse Transfer Capacitance		-	42	-	
$\left.\mathrm{ta}_{\text {(}} \mathrm{ON}\right)$	Turn-on Delay Time	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15, \mathrm{IDS}=1 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=6 \end{aligned}$	-	5.5	-	ns
tr	Turn-on Rise Time		-	10.5	-	
td(OFF)	Turn-off Delay Time		-	15	-	
tf	Turn-off Fall Time		-	3.7	-	

Gate Charge Characteristics e

Qg	Total Gate Charge	$V_{\text {ds }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}=4.5 \mathrm{~V}, \mathrm{lds}=4 \mathrm{~A}$	-	4	-	nC
Qg	Total Gate Charge	$\begin{aligned} & \mathrm{VDS}=15 \mathrm{~V}, \mathrm{VGS}=10 \mathrm{~V}, \\ & \mathrm{lDS}=4.0 \mathrm{~A} \end{aligned}$	-	8.3	12.5	
Qgs	Gate-Source Charge		-	1.1	-	
Qgd	Gate-Drain Charge		-	1.8	-	

Note d : Pulse test ; pulse width $: \leqslant 300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
Note e: Guaranteed by design, not subject to production testing.

N Channel Typical Operating Characteristics

Safe Operation Area

Drain Current

T_{J} Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Thermal Transient Impedance

N Channel Typical Operating Characteristics (Cont.)

N Channel Typical Operating Characteristics (Cont.)

T_{J} - Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Capacitance

Source-Drain Diode Forward

$\mathrm{V}_{\text {SD }}$ - Source - Drain Voltage (V)

Gate Charge

P Channel Electrical Characteristics ($\mathrm{T}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Test Conditions		P Channel			Unit
				Min.	Typ.	Max.	
Static Characteristics							
BVoss	Drain-Source Breakdown Voltage	$V_{G s}=0 \mathrm{~V}$, los $=-250 \mu \mathrm{~A}$		-30	-	-	V
loss	Zero Gate Voltage Drain Current	$\begin{aligned} & V_{D S}=-24 \mathrm{~V}, \\ & V_{\mathrm{Gs}}=0 \mathrm{~V} \end{aligned}$		-	-	-1	A
			$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$	-	-	-30	
VGS(th)	Gate Threshold Voltage	$V_{\text {ds }}=V_{\text {Gs }}$, Ids $=-250 \mu \mathrm{~A}$		-1.3	-1.8	-2.3	V
Igss	Gate Leakage Current	$\mathrm{V}_{\mathrm{Gs}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\text {ds }}=0 \mathrm{~V}$		-	-	± 100	nA
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}{ }^{\text {d }}$	Drain-Source On-state Resistance	$V_{G s}=-10 \mathrm{~V}$, $\mathrm{ldss}^{\text {a }}=-7 \mathrm{~A}$		-	11	14	$\mathrm{m} \Omega$
		$V_{G S}=-4.5 \mathrm{~V}, \mathrm{lds}=-4 \mathrm{~A}$		-	15	20	$\mathrm{m} \Omega$
Diode Characteristics							
$V_{S D}{ }^{\text {d }}$	Diode Forward Voltage	$\mathrm{Isd}^{\text {}}=-1 \mathrm{~A}, \mathrm{~V}_{\mathrm{gs}}=0 \mathrm{~V}$		-	-0.75	-1	V
trr	Reverse Recovery Time	$\left\{\begin{array}{l} \mathrm{lsd}=-7.0 \mathrm{~A}, \\ \mathrm{~d} \mathrm{~s}_{\mathrm{sd}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{array}\right.$		-	17	-	ns
Qri	Reverse Recovery Charge			-	9	-	nC
Dynamic Characteristics e							
R_{g}	Gate Resistance	$\mathrm{V}_{\mathrm{Gs}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Ds}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		-	12	-	Ω
Ciss	Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V}, \\ & \text { Frequency }=1.0 \mathrm{MHz} \end{aligned}$		-	750	975	pF
Coss	Output Capacitance			-	142	-	
Crss	Reverse Transfer Capacitance			-	102	-	
$\mathrm{ta}(\mathrm{ON})$	Turn-on Delay Time	$\begin{aligned} & V_{D D}=-15 \mathrm{~V}, R_{L}=15, \\ & V_{G E N}=-10 V, R_{G}=6 \end{aligned}$		-	9	17	ns
tr	Turn-on Rise Time			-	11	20	
$\mathrm{t}_{\text {(}}$ OFF)	Turn-off Delay Time			-	55	99	
$\mathrm{tf}^{\text {f }}$	Turn-off Fall Time			-	34	62	
Gate Charge Characteristics e							
Q_{g}	Total Gate Charge	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V} \text {, } \mathrm{I}_{\mathrm{DS}}=- \\ & 7.0 \mathrm{~A} \end{aligned}$		-	8	-	$n C$
Q_{g}	Total Gate Charge	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V} \text {, los=- } \\ & 7.0 \mathrm{~A} \end{aligned}$		-	17	24	
$Q_{\text {gth }}$	Threshold Gate Charge			-	1	-	
Qgs	Gate-Source Charge			-	2	-	
Q_{gd}	Gate-Drain Charge			-	4	-	

Note d : Pulse test ; pulse width $\leqslant 300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
Note e : Guaranteed by design, not subject to production testing.

P Channel Typical Operating Characteristics

Safe Operation Area

Drain Current

T_{J} - Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Thermal Transient Impedance

Square Wave Pulse Duration (sec)

P Channel Typical Operating Characteristics (Cont.)

P Channel Typical Operating Characteristics (Cont.)

T_{J} - Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Capacitance

$$
-V_{D S} \text { - Drain - Source Voltage (V) }
$$

Source-Drain Diode Forward

$-\mathrm{V}_{\text {SD }}$ - Source - Drain Voltage (V)

Gate Charge

Attention

1, Any and all Winsok power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Winsok power representative nearest you before using any Winsok power products described or contained herein in such applications.

2,Winsok power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Winsok power products described or contained herein.

3, Specifications of any and all Winsok power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

4, Winsok power Semiconductor CO., LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

5, In the event that any or all Winsok power products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

6, No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of Winsok power Semiconductor CO., LTD.

7, Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Winsok power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

8, Any and all information described or contained herein are subject to change without notice due to product/technology improvement,etc. When designing equipment, refer to the "Delivery Specification" for the Winsok power product that you Intend to use.

9, this catalog provides information as of Sep.2014. Specifications and information herein are subject to change without notice.

